

Electric Magnetic Field (EMF) Study Report

January 18, 2024 Rev. 4

Prepared by: Seth D. Anderson 1/18/2024.

Reviewed by: Diego Gonzalez 1/18/2024.

Approved by: Kevin G. Martin 1/18/2024.

Mill Point Solar I Project

Prepared For:

ConnectGen Montgomery County LLC 1001 McKinney, Suite 700 Houston, TX 77002

Prepared By:

TRC 215 Greenfield Parkway Liverpool, NY 13088

TABLE OF CONTENTS

1.0	Introduction
2.0	Technical Approach4
3.0	Analytical Results
3.1	Electric Field Graphs
3.2	Magnetic Flux Density Profile Results14
4.0	Nearest Residence
5.0	Summary of Results
6.0	Conclusion
7.0	Appendix26
	TABLE OF FIGURES
Figure	1: Transmission Connection Aerial
Figure	2: Generator Connection Aerial Imagery
Figure	3: Existing Line #14 and Existing Line #18
Figure	4: Existing Line #14 and Proposed Line #18 3-Pole Cross Section 6
Figure	5: Existing Line #14 and Proposed #18 Loop-in/Loop-out (Worst Case) Cross Section 6
Figure	6: Proposed Transmission Loop-in Loop-out Cross Section
Figure	7: Proposed structure GC STR.1 and GC STR.2 Cross Section
Figure	8: Nearest Residence 'A'
Figure	9: Nearest Residence 'B'
	TABLES
Table	1: Existing and Proposed Line Ratings4

1.0 Introduction

On behalf of ConnectGen Montgomery County LLC (ConnectGen), a subsidiary of ConnectGen LLC, TRC Companies has performed an engineering assessment of the Electric and Magnetic Fields (EMF) associated with Mill Point Solar I Project (the Facility) transmission lines. The proposed configuration will consist of the facility collection substation with a short transmission line, referred to as the generator interconnection, to a proposed substation to be owned by National Grid. This National Grid Station will have a loop-in and loop-out connection to the existing National Grid Marcy-New Scotland #18 345kV transmission line. The EDIC-New Scotland #14 345kV line runs parallel to the proposed 3-pole structures and loop-in loop-out structures on the #18 line therefore the EMF impacts of the #14 line are included in the EMF study.

This study was performed for the generator interconnection line between the proposed National Grid Station and the proposed Mill Point Solar I Project collection station, and the proposed loopin and loop-out connections between the proposed National Grid substation and the existing National Grid Marcy-New Scotland #18 345kV transmission line. In addition, the existing and proposed #14 and #18 line Right of Way (ROW) was evaluated for EMF. No EMF calculations were performed on the collection system as this will be operated below 69kV.

The proposed transmission interconnection consists of a loop-in loop-out of four conductors bundled 1351.5 thousand circular mils (kcmil) 45/7 Aluminum Conductor Steel Reinforced (ACSR) "Dipper" conductor that will run approximately 305 feet (ft) from the takeoff structures from the proposed National Grid substation to the proposed vertical deadend structures in the existing ROW: see Figure 1.

Figure 1: Transmission Connection Aerial

The proposed generator connection consists of double conductor bundled 1351.5 kcmil 45/7 Aluminum Conductor Steel Reinforced (ACSR) "Dipper" conductor. This line will require two (2) intermediate structures, and three (3) spans, to connect the proposed Mill Point collection station to the proposed National Grid substation.

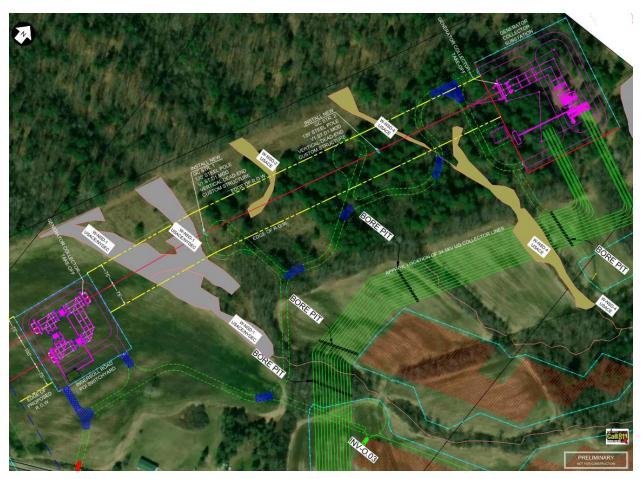


Figure 2: Generator Connection Aerial Imagery

The effects of the existing National Grid Marcy-New Scotland #18 345kV transmission line combined with the new interconnection were not modeled as the orientation of the two lines are approximately 90° apart and the typical EMF modeling programs require the lines to be parallel to model the shared impacts.

2.0 Technical Approach

EMF levels were calculated using Bonneville Power Corona & Field Effects Ver. 3.1 Software. A computer simulation was developed to calculate the existing and proposed EMF levels at the cross-sections as shown in Figure 3 through 7 below.

EMF studies were conducted for these cross sections using the conductor max sag midspan heights to represent peak EMF levels that could be seen one meter above the ground level. Please see plan and profile drawings located in the appendix.

This study evaluated the EMF levels of the existing EDIC-New Scotland #14 345kV, operating at the Summer Normal (rating of 2228 amps), Summer Short Term (rating of 2886 amps), Winter Normal (rating of 2718 amps), and Winter Short Term (rating of 3258 amps) for the "Drake" conductor, the proposed National Grid Marcy-New Scotland #18 345kV transmission 3-pole structure, and the proposed loop-in and loop-out of this line at 3124, 4204, 3824, 4716 amps, respectively. This rating is the limiting rating for the #18 line based on the Marcy end of the line which is limited by a two-conductor bundled 1431 kcmil 45/7 "Bobolink". This two-conductor rating is still the controlling factor for the four-bundled "Dipper" conductor. The existing average load of the line was not provided by National Grid.

This study also evaluated the peak power capability supplied by ConnectGen of 430 amps. This study summarizes the proposed calculated EMF generated from these locations.

	Peak Facility Rating	Summer Normal	Summer Short Term	Winter Normal	Winter Short Term
Existing # 18 Line & Loop In / Loop Out Current Rating (Amps)	NA	3124	4204	3824	4716
Existing #14 EDIC- Scotland Current Rating (Amps)	NA	2228	2886	2718	3258
Interconnection Current Rating (Amps)	430	N/A	NA	N/A	NA

Table 1: Existing and Proposed Line Ratings

The EMF calculations did not consider any energized sources other than the 3-phase transmission lines. In performing the EMF calculations, the following typical parameters were used:

- 1351.5 kcmil 45/7 ACSR "Dipper" conductor diameter is used on the existing #18 Line, the proposed Loop in/Loop out, and the proposed generator connection.
- 795 kcmil 26/7 ASCR "Drake" conductor diameter is used on the existing EDIC-Scotland #14 345kV transmission line.
- Existing and proposed 7/16" 7 standard EHS steel shield wire diameter.
- Existing 360' ROW for the existing National Grid parallel lines (Marcy-New Scotland #18 and EDIC New Scotland #14), Proposed 250' ROW for the Transmission loop-in loop-out connection (100' between centerline of structures and 75' from centerline of structure to Edge of ROW), and 150' ROW for the Generator Collector Transmission Line (75' from centerline of structure to Edge of ROW).

- Phase spacing of the conductors is as shown in Figure 3 through Figure 7 below and the conductor height above finished grade is based on the minimum height of the span at maximum operating temperature.
- Current Levels as shown in Table 1: Existing and Proposed Line Ratings.

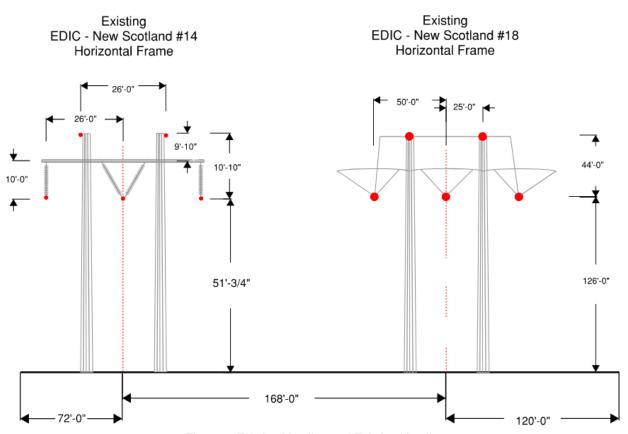


Figure 3: Existing Line #14 and Existing Line #18

Note: The height from 'Figure 3: Existing Line #18' was found using a PLS-CADD model.

Note: Both existing Horizontal frames used the structure geometry to determine the final height of the SW.

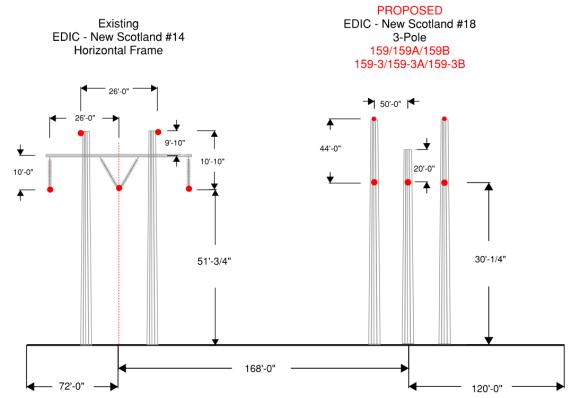
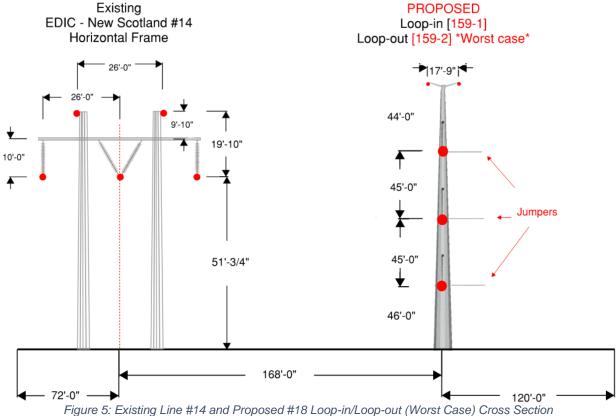



Figure 4: Existing Line #14 and Proposed Line #18 3-Pole Cross Section

rigare 6. Existing Ellie #14 and rioposed #16 Edop ##250p out (Worst Odde) cross decision

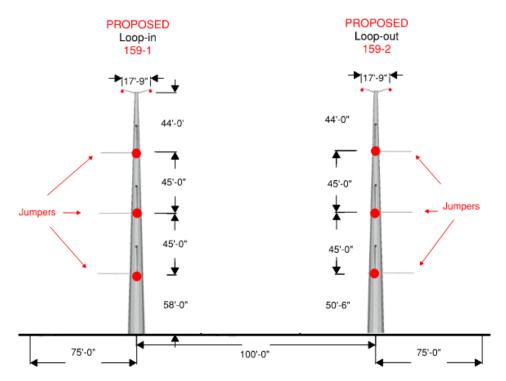


Figure 6: Proposed Transmission Loop-in Loop-out Cross Section

PROPOSED
Generator Connection
GC STR.1
GC STR.2 *Worst Case*

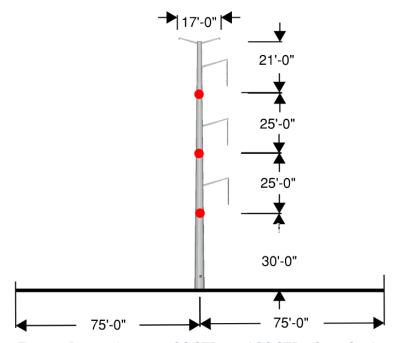
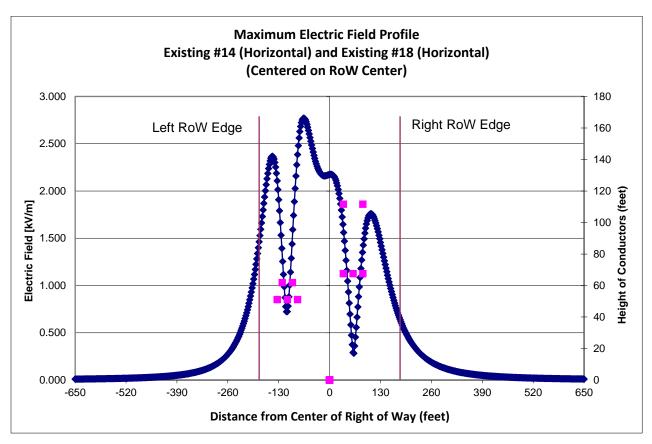


Figure 7: Proposed structure GC STR.1 and GC STR.2 Cross Section

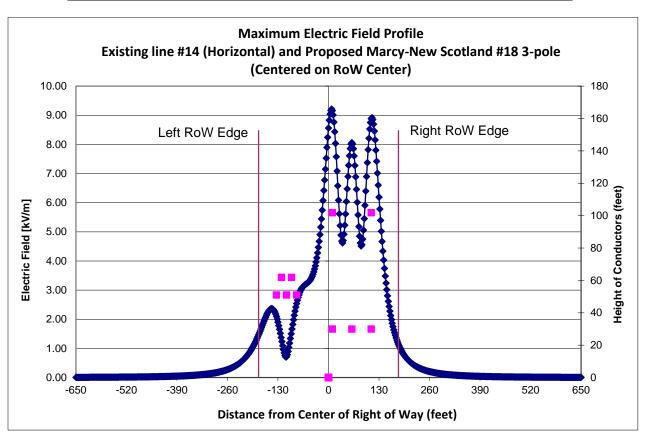
3.0 Analytical Results

The following tables and figures provide the results of the calculated EMF. For a breakdown of inputs please see section 7.0 Appendix.

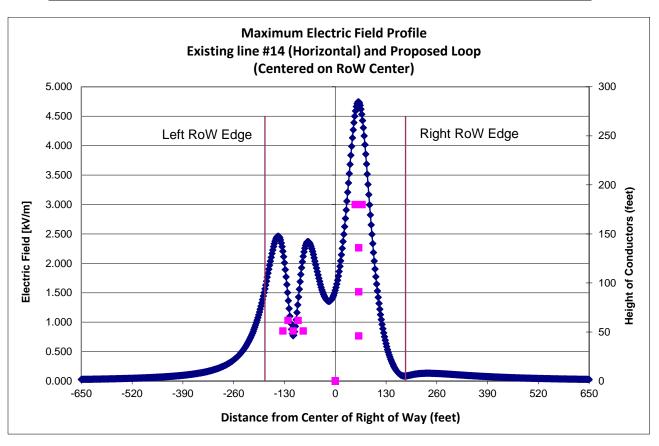

3.1 Electric Field Graphs

Electric fields values are dependent on structure geometry, height to ground, conductor diameter and voltage. The tables and figures provided below depict the following electric field graphs:

- Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18
- Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole
- Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out
- Proposed Loop-in Loop-out
- Proposed Generator Interconnection GC STR.2

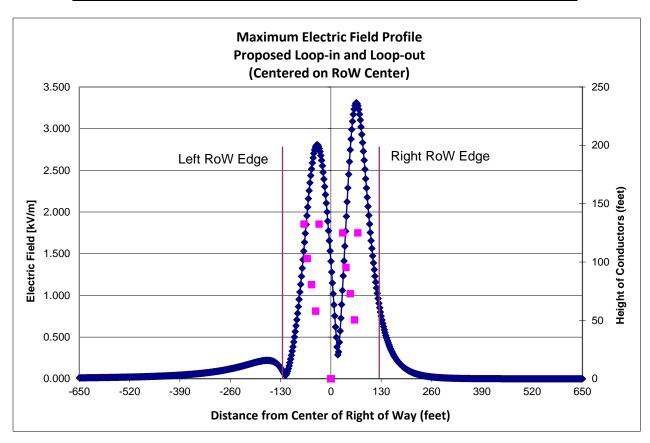

Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18

	Electric Field (kV/m)	
Configuration	Max. ROW Edge	Max. Value in ROW
Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18	1.461 (South)	2.8

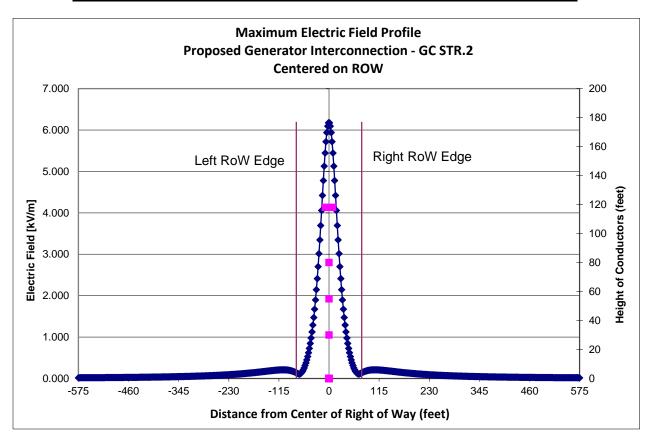


Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole

	Electric Field (kV/m)	
Configuration	Max. ROW Edge	Max. Value in ROW
Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole	1.466 (South)	9.2

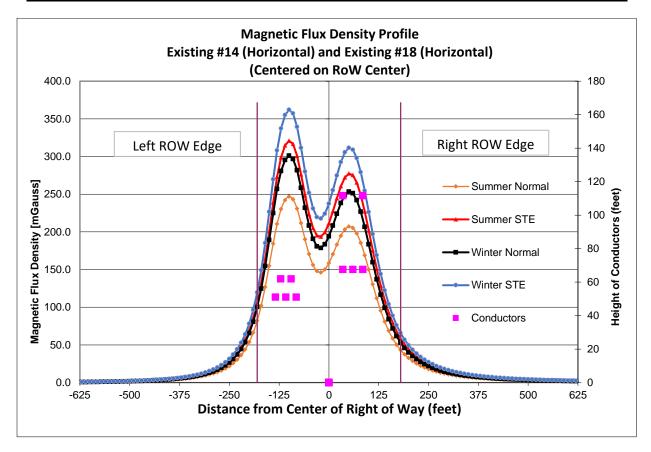


	Electric Field (kV/m)	
Configuration	Max. ROW Edge	Max. Value in ROW
Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out	1.567 (South)	4.7

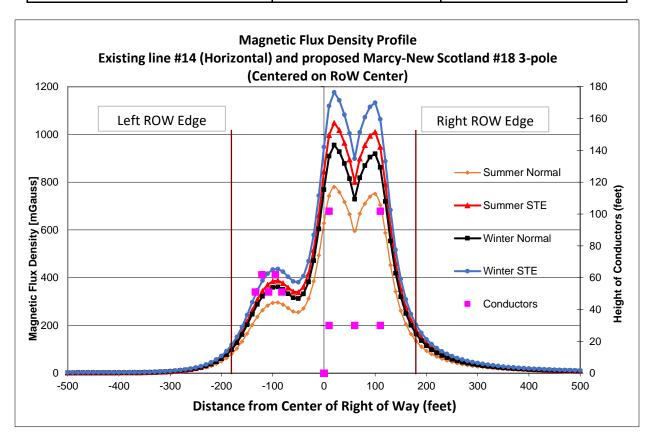

Proposed Loop-in Loop-out

	Electric Field (kV/m)	
Configuration	Max. ROW Edge	Max. Value in ROW
Proposed Loop-in Loop-out	0.878 (East)	3.3

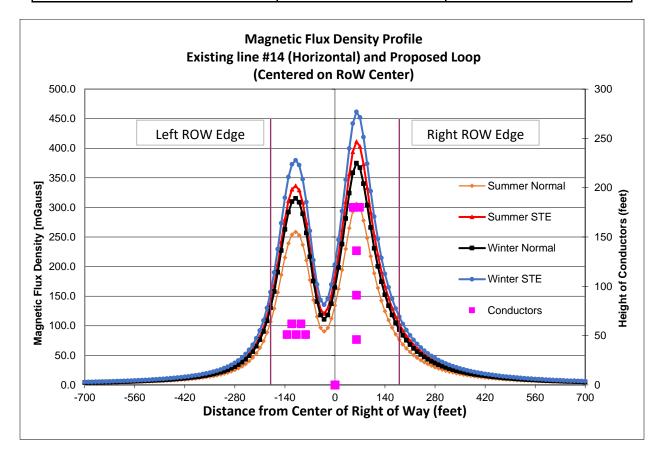
Proposed Generator Interconnection - GC STR.2


	Electric Field (kV/m)	
Configuration	Max. ROW Edge	Max. Value in ROW
Proposed Generator Interconnection - GC STR.2	0.136 (equal on both sides)	6.2

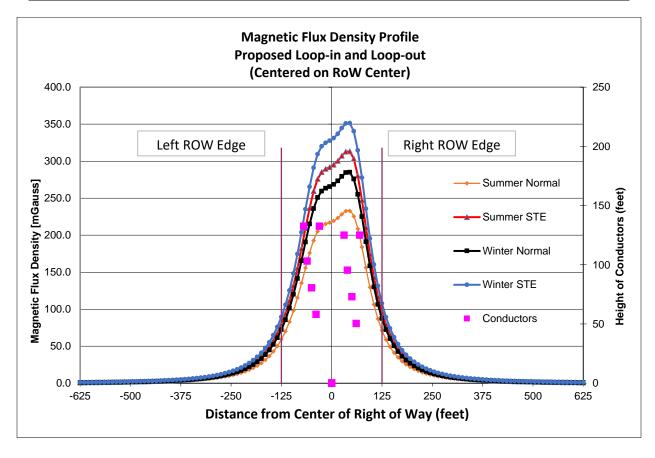
3.2 Magnetic Flux Density Profile Results


Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)

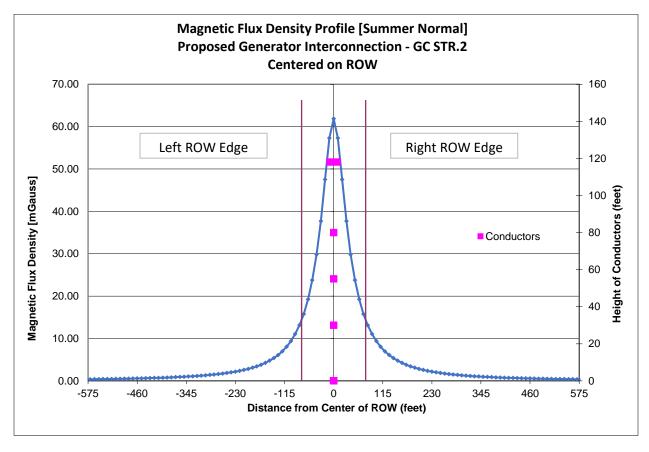
	Magnetic Field (mG)		
Loading Cases	Max. ROW Edge	Max. Value in ROW	
Summer Normal	82.144 (South)	246.7	
Summer Short Term Emergency	105.944 (South)	320.9	
Winter Normal	100.171 (South)	301.1	
Winter Short Term Emergency	119.687 (South)	362.1	


Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole

	Magnetic Field (mG)		
Loading Cases	Max. ROW Edge	Max. Value in ROW	
Summer Normal	133.884 (North)	780.6	
Summer Short Term Emergency	180.537 (North)	1048.8	
Winter Normal	163.914 (North)	955.4	
Winter Short Term Emergency	202.457 (North)	1176.8	


Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out

	Magnetic Field (mG)		
Loading Cases	Max. ROW Edge	Max. Value in ROW	
Summer Normal	106.679 (South)	306.1	
Summer Short Term Emergency	139.011 (South)	411.2	
Winter Normal	130.209 (South)	374.6	
Winter Short Term Emergency	156.772 (South)	461.4	



Proposed Loop-in Loop-out

	Magnetic Field (mG)		
Loading Cases	Max. ROW Edge	Max. Value in ROW	
Summer Normal	71.411 (East)	232.8	
Summer Short Term Emergency	96.098 (East)	313.3	
Winter Normal	87.412 (East)	285.0	
Winter Short Term Emergency	107.802 (East)	351.4	

	Magnetic Field (mG)		
Loading Cases	Max. ROW Edge	Max. Value in ROW	
Peak Facility Rating	14.358 (Equal on both sides)	61.9	

4.0 Nearest Residence

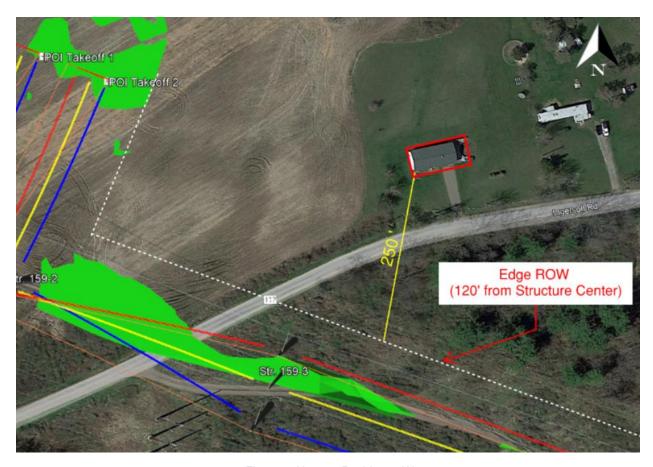


Figure 8: Nearest Residence 'A'

A review of the Facility Site has shown that there are two residential properties in proximity to the proposed transmission line upgrades for this Project.

Residence 'A' is located 250 feet away from the edge of the ROW (equal to 370 feet from structure center). At 250 feet outside of the ROW the governing case for the nearest residence is Winter Short Term with a magnetic flux value of 16.61 Milligauss (mG) and an electric field value of 0.030519 kV/m; these values are 1.411% and 0.332% of the peak existing EDIC-Scotland #14 and the proposed Marcy-New Scotland #18 3-pole values, respectively.



Figure 9: Nearest Residence 'B'

Residence 'B' is located 30 feet away from the edge of the ROW (equal to 102 feet from structure center). At 30 feet outside of the ROW the governing case for the nearest residence is Winter Short Term with a magnetic flux value of 461.4 mG and an electric field value of 0.8844617 kV/m; these values are 19.9% and 17.9% of the peak existing EDIC-Scotland #14 and the proposed Marcy-New Scotland #18 Loop-in Loop-out respectively. For a more expansive breakdown for the case results see **Section 5: Summary of results.**

5.0 Summary of Results

Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)

Electric Field

The maximum calculated electric field level on the **Existing EDIC-Scotland #14 (Horizontal Frame)** and **Existing Marcy-New Scotland #18 (Horizontal Frame)** is 2.8 kV/m located 66 ft from the ROW centerline. The study reveals that the calculated electric field levels at the edge of the existing ROW, located 175 ft from the ROW centerline, is 1.461 kV/m and is less than the 1.6 kV/m maximum electric field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line per the NYS Opinion No. 78-13.

Summer Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)** transmission line is 246.7 mG located 50 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 82.144 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Summer Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)** transmission line is 320.9 mG located 50 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 105.944 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)** transmission line is 301.1 mG located 50 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 100.171 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Existing Marcy-New Scotland #18 (Horizontal Frame)** transmission line is 362.1 mG located 50 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 119.687 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole

Electric Field

The maximum calculated electric field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole** is 9.2 kV/m located 8 ft from the ROW centerline. The study reveals that the calculated electric field levels at the edge of the existing ROW, located 175 ft from the ROW centerline, is 1.466 kV/m and is less than the 1.6 kV/m maximum electric field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line per the NYS Opinion No. 78-13.

Summer Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole** transmission line is 780.6 mG located 20 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 133.884 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Summer Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole** transmission line is 1048.8 mG located 20 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 180.537 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole** transmission line is 955.4 mG located 20 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 163.914 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole** transmission line is 1176.8 mG located 20 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 202.457 mG, which does exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out

Electric Field

The maximum calculated electric field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out** is 4.7 kV/m located 60 ft from the ROW centerline. The study reveals that the calculated electric field levels at the edge of the existing ROW, located 175 ft from the ROW centerline, is 1.567 kV/m and is less than the 1.6 kV/m maximum electric field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line per the NYS Opinion No. 78-13.

Summer Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out** transmission line is 306.1 mG located 60 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 106.679 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Summer Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out** transmission line is 411.2 mG located 60 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 139.011 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out** transmission line is 374.6 mG located 60 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 130.209 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 Loop-in Loop-out** transmission line is 461.4 mG located 60 ft from the ROW centerline. The study reveals that the calculated magnetic field level at the edge of the existing ROW, located 175 ft from the ROW centerline, is 156.772 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Proposed Loop-in Loop-out

Electric Field

The maximum calculated electric field level on the **Proposed Loop-in and Loop-out** transmission connection is 3.3 kV/m located 54 ft from the ROW centerline. The study reveals that the calculated electric field levels at the edge of the proposed ROW, located 125 ft from the ROW centerline, is 0.878 kV/m and is less than the 1.6 kV/m maximum electric field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line per the NYS Opinion No. 78-13.

Summer Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Proposed Loop-in and Loop-out** transmission connection for the 345kV line is 232.8 mG located 45 ft from the centerline of the proposed ROW. The study reveals that the calculated magnetic field level at the edge of the proposed ROW, located 125 ft from the ROW centerline, is 71.411 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Summer Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Proposed Loop-in and Loop-out** transmission connection for the 345kV line is 313.3 mG located 45 ft from the centerline of the proposed ROW. The study reveals that the calculated magnetic field level at the edge of the proposed ROW, located 125 ft from the ROW centerline, is 96.098 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Normal Results

Magnetic Field

The maximum calculated magnetic field level on the **Proposed Loop-in and Loop-out** transmission connection for the 345kV line is 285.0 mG located 45 ft from the centerline of the proposed ROW. The study reveals that the calculated magnetic field level at the edge of the proposed ROW, located 125 ft from the ROW centerline, is 87.412 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Winter Short Term Results

Magnetic Field

The maximum calculated magnetic field level on the **Proposed Loop-in and Loop-out** transmission connection for the 345kV line is 351.4 mG located 45 ft from the centerline of the proposed ROW. The study reveals that the calculated magnetic field level at the edge of the proposed ROW, located 125 ft from the ROW centerline, is 107.802 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

Proposed Generator Interconnection –GC STR.2

Electric Field

The maximum calculated electric field level on the **Proposed GC STR.2 Generator Interconnection** transmission connection is 6.2 kV/m located at the ROW centerline. The study reveals that the calculated electric field levels at the edge of the proposed ROW, located 75 ft from the centerline, is 0.136 kV/m and is less than the 1.6 kV/m maximum electric field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line per the NYS Opinion No. 78-13.

Peak Facility Rating Results

Magnetic Field

The maximum calculated magnetic field level on the **Proposed GC STR.2 Generator Interconnection** transmission connection is 61.9 mG located at the centerline of the proposed ROW. The study reveals that the calculated magnetic field level at the edge of the proposed ROW, located 75 ft from the ROW centerline, is 14.358 mG, which does not exceed the 200 mG maximum field level permitted at the edge of a transmission ROW in New York occupied by a major transmission line as per the NYS PSC Interim Guideline.

6.0 Conclusion

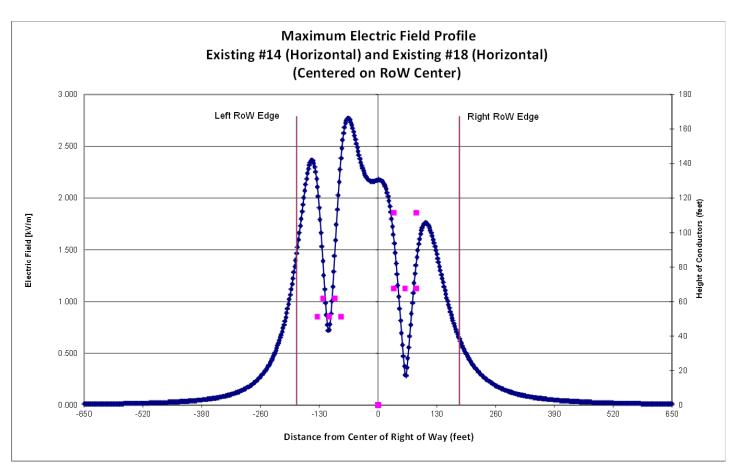
The Existing EDIC-Scotland #14 (Horizontal Frame) and Proposed Marcy-New Scotland #18 3-pole configuration as calculated does slightly exceed the NYS PSC Interim Guideline of 200 mG by 2.457 mG during the winter short term loading conditions. This is a contingency condition that is rarely anticipated to be experienced by this line. The summer and winter normal current ratings are within the NYS PSC Interim Guideline.

The remainder of the EMF levels associated with the transmission connections to the Mill Point Solar I Project are within established guidelines of 1.6 kV/m for the electric field and 200mG for the magnetic field at the edge of the Project Rights of Way.

7.0 Appendix

- Electric Magnetic Field Inputs
- Magnetic Flux Density Inputs
- EDIC New Scotland #14 (Existing) Plan and Profile
- Transmission Interconnection Plan & Profile
- Generator Interconnection Plan & Profile

Existing #14 and Existing #18


5			Number of	Conductor Diameter	Conductor Spacing	L-L Voltage	
Bundle	X-feet	Y-feet	Conductors	[inches]	[inches]	(rated kv)	Line Name
1	35.00	67.60	4	1.3860	18.000	345	Existing #18 Line
2	60.00	67.60	4	1.3860	18.000	345	
3	85.00	67.60	4	1.3860	18.000	345	
4	35.00	111.60	1	0.4375	0.000	0	SW
5	85.00	111.60	1	0.4375	0.000	0	SW
6	-82.00	51.06	2	1.1070	18.000	345	Existing #14 Line
7	-108.00	51.06	2	1.1070	18.000	345	
8	-134.00	51.06	2	1.1070	18.000	345	
9	-121.00	61.90	1	0.4375	0.000	0	SW
10	-95.00	61.90	1	0.4375	0.000	0	SW
	3 4 5 6 7 8	1 35.00 2 60.00 3 85.00 4 35.00 5 85.00 6 -82.00 7 -108.00 8 -134.00 9 -121.00	1 35.00 67.60 2 60.00 67.60 3 85.00 67.60 4 35.00 111.60 5 85.00 111.60 6 -82.00 51.06 7 -108.00 51.06 8 -134.00 51.06 9 -121.00 61.90	Bundle X-feet Y-feet Conductors 1 35.00 67.60 4 2 60.00 67.60 4 3 85.00 67.60 4 4 35.00 111.60 1 5 85.00 111.60 1 6 -82.00 51.06 2 7 -108.00 51.06 2 8 -134.00 51.06 2 9 -121.00 61.90 1	Bundle X-feet Y-feet Number of Conductors Diameter [inches] 1 35.00 67.60 4 1.3860 2 60.00 67.60 4 1.3860 3 85.00 67.60 4 1.3860 4 35.00 111.60 1 0.4375 5 85.00 111.60 1 0.4375 6 -82.00 51.06 2 1.1070 7 -108.00 51.06 2 1.1070 8 -134.00 51.06 2 1.1070 9 -121.00 61.90 1 0.4375	Bundle X-feet Y-feet Conductors Diameter [inches] Spacing [inches] 1 35.00 67.60 4 1.3860 18.000 2 60.00 67.60 4 1.3860 18.000 3 85.00 67.60 4 1.3860 18.000 4 35.00 111.60 1 0.4375 0.000 5 85.00 111.60 1 0.4375 0.000 6 -82.00 51.06 2 1.1070 18.000 7 -108.00 51.06 2 1.1070 18.000 8 -134.00 51.06 2 1.1070 18.000 9 -121.00 61.90 1 0.4375 0.000	Bundle X-feet Y-feet Conductors Diameter [inches] Spacing [inches] L-L Voltage (rated kV) 1 35.00 67.60 4 1.3860 18.000 345 2 60.00 67.60 4 1.3860 18.000 345 3 85.00 67.60 4 1.3860 18.000 345 4 35.00 111.60 1 0.4375 0.000 0 5 85.00 111.60 1 0.4375 0.000 0 6 -82.00 51.06 2 1.1070 18.000 345 7 -108.00 51.06 2 1.1070 18.000 345 8 -134.00 51.06 2 1.1070 18.000 345 9 -121.00 61.90 1 0.4375 0.000 0

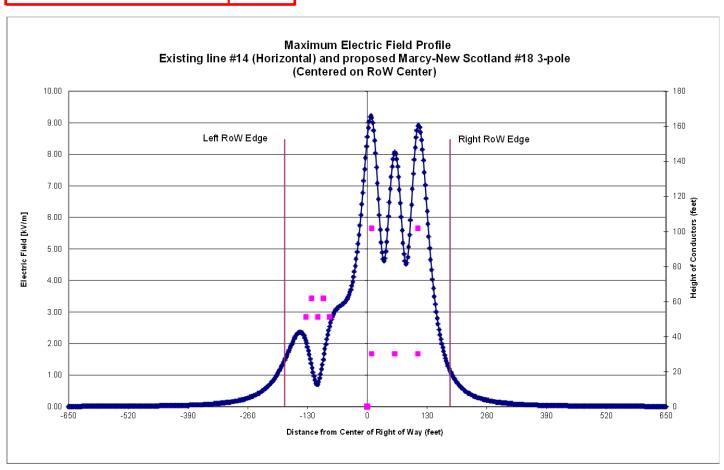
		QTY Subconductors -	
Conductor	Codename	Spacing (in)	SW
1351.5kcmil 45/7 ACSR	Dipper	4 - 18in	7/16" - 7 EHS Steel
795 kcmil 26/7 ASCR	Drake	2 - 18 in	7/16" - 7 EHS Steel

Electric Field [kV/m]	
at Left RoW Edge	1.461
at Right RoW Edge	0.638
Max E Field Value	2.8

Right of Way Data

Offset from X=0 to Left RoW edge	-180.00
Offset from X=0 to RoW center	0.00

Existing #14 and Proposed #18 (3-pole)


Bundle	X-feet	Y-feet	Number of Conductors	Conductor Diameter [inches]	Conductor Spacing [inches]	L-L Voltage (rated kV)	Line Name
1	10.00	30.02	4	1.3860	18.000	345	Proposed #18 (3-pole)
2	60.00	30.03	4	1.3860	18.000	345	
3	110.00	30.03	4	1.3860	18.000	345	
4	10.00	101.83	1	0.4375	0.000	0	SW
5	110.00	101.83	1	0.4375	0.000	0	SW
6	-82.00	51.06	2	1.1070	18.000	345	Existing #14 Line
7	-108.00	51.06	2	1.1070	18.000	345	
8	-134.00	51.06	2	1.1070	18.000	345	
9	-121.00	61.90	1	0.4375	0.000	0	SW
10	-95.00	61.90	1	0.4375	0.000	0	SW

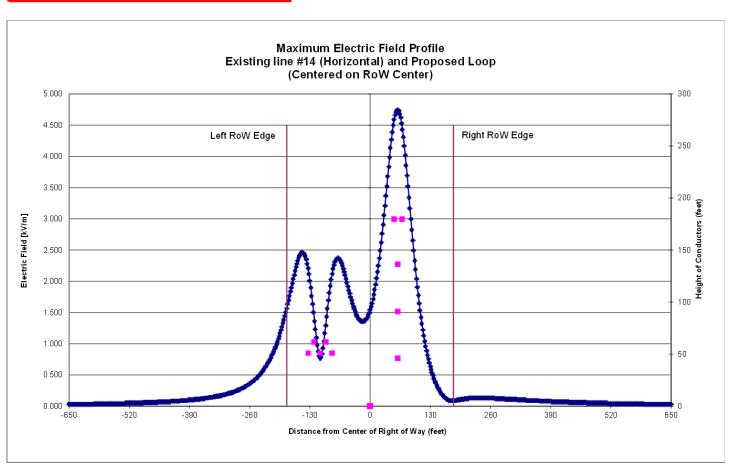
Conductor	Codename	QTY Subconductors - Spacing (in)	SW
1351.5kcmil 45/7 ACSR	Dipper	4 - 18in	7/16" - 7 EHS Steel
795 kcmil 26/7 ASCR	Drake	2 - 18 in	7/16" - 7 EHS Steel

Electric Field [kV/m]	
at Left RoWEdge	1.466
at Right RoW Edge	1.145
Max E Field Value	9.2

Right of Way Data

Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center
-180.00
0.00

Existing #14 and Proposed Loop


Line Name	L-L Voltage (rated kV)	Conductor Spacing [inches]	Conductor Diameter [inches]	Number of Conductors	Y-feet	X-feet	Bundle
Proposed #18 (Loop)	345	18.000	1.3860	4	46.00	60.00	1
	345	18.000	1.3860	4	91.00	60.00	2
	345	18.000	1.3860	4	136.00	60.00	3
SW	0	0.000	0.4375	1	180.00	51.13	4
SW	0	0.000	0.4375	1	180.00	68.88	5
Existing #14 Line	345	18.000	1.1070	2	51.06	-82.00	6
	345	18.000	1.1070	2	51.06	-108.00	7
	345	18.000	1.1070	2	51.06	-134.00	8
SW	0	0.000	0.4375	1	61.90	-95.00	9
SW	0	0.000	0.4375	1	61.90	-121.00	10

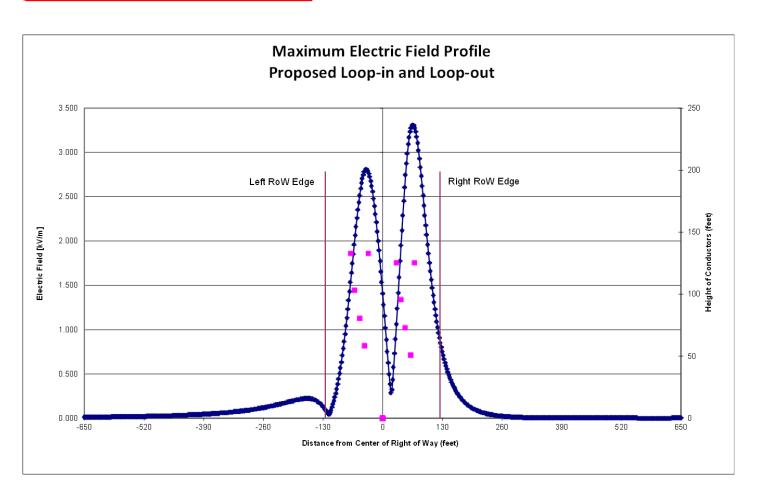
Conductor	Codename	QTY Subconductors - Spacing (in)	SW
1351.5kcmil 45/7 ACSR	Dipper	4 - 18in	7/16" - 7 EHS Steel
795 kcmil 26/7 ASCR	Drake	2 - 18 in	7/16" - 7 EHS Steel

Electric Field [kV/m]	
at Left RoW Edge	1.567
at Right RoW Edge	0.087
Max E Field Value	4.7

Right of Way Data

Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center
0.00

Proposed Loop-in and Loop-out


Bundle	X-feet	Y-feet	Number of Conductors	Conductor Diameter [inches]	Conductor Spacing [inches]	L-L Voltage (rated kV)	Line Name
1	-39.00	58.09	4	1.3860	18.000	345	Proposed Loop-in
2	-50.00	80.59	4	1.3860	18.000	345	
3	-61.00	103.09	4	1.3860	18.000	345	
4	-69.44	132.59	1	0.4375	0.000	0	SW
5	-30.56	132.59	1	0.4375	0.000	0	SW
6	61.00	105.00	4	1.3860	18.000	345	Proposed Loop-out
7	50.00	73.00	4	1.3860	18.000	345	
8	39.00	95.50	4	1.3860	18.000	345	
9	69.44	125.00	1	0.4375	0.000	0	SW
10	30.56	125.00	1	0.4375	0.000	0	SW

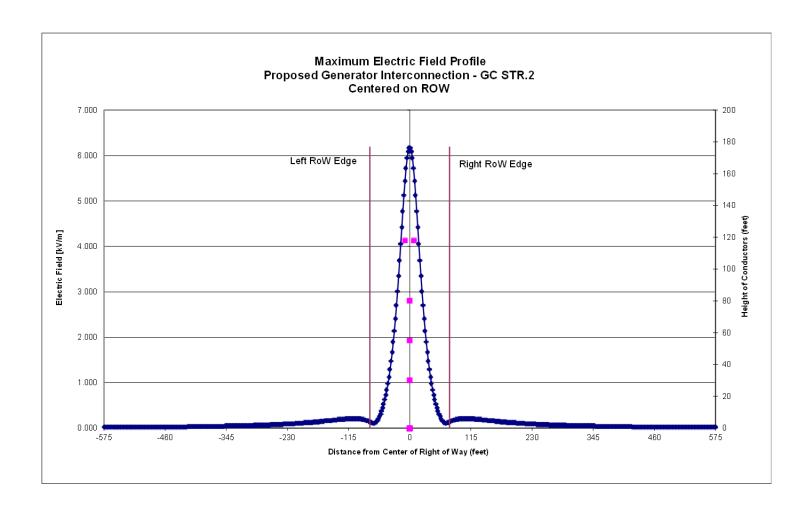
		QTY Subconductors -		
Conductor	Codename	Spacing (in)	SW	
1351.5kcmil 45/7 ACSR	Dipper	4 - 18in	7/16" - 7 EHS Steel	
1351.5kcmil 45/7 ACSR	Dipper	4 - 18in	7/16" - 7 EHS Steel	

Electric Field [kV/m]	
at Left RoW Edge	0.097
at Right RoW Edge	0.878
Max E Field Value	3.3

Right of Way Data

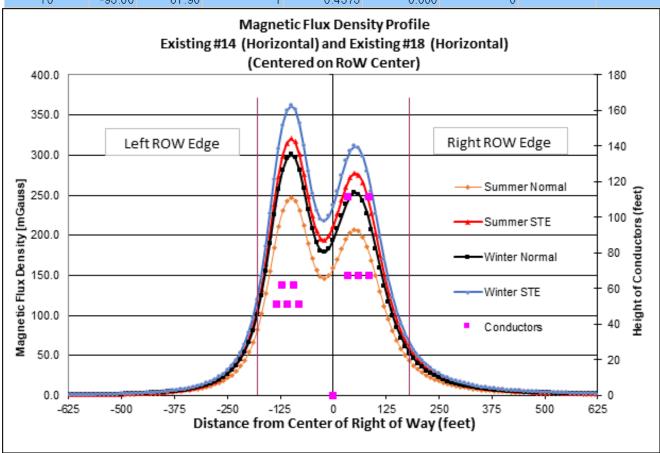
Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center
0.00

EMF Inputs Calculation Identifier: Proposed Generator Interconnection - GC STR.2


Bundle	X-feet	Y-feet	Number of Conductors	Conductor Diameter [inches]	Conductor Spacing [inches]	L-L Voltage (rated kV)	Line Name
1	0.00	30.00	2	1.3860	18.000	345	GC STR
2	0.00	55.00	2	1.3860	18.000	345	
3	0.00	80.00	2	1.3860	18.000	345	
4	-8.50	118.05	1	0.4375	0.000	0	SW
5	8.50	118.05	1	0.4375	0.000	0	SW

		QTY Subconductors -	
Conductor	Codename	Spacing (in)	SW
1351.5kcmil 45/7 ACSR	Dipper	2 - 18in	7/16" - 7 EHS Steel

Electric Field [kV/m]	
at Left RoWEdge	0.136
at Right RoW Edge	0.136
Max E Field Value	6.2

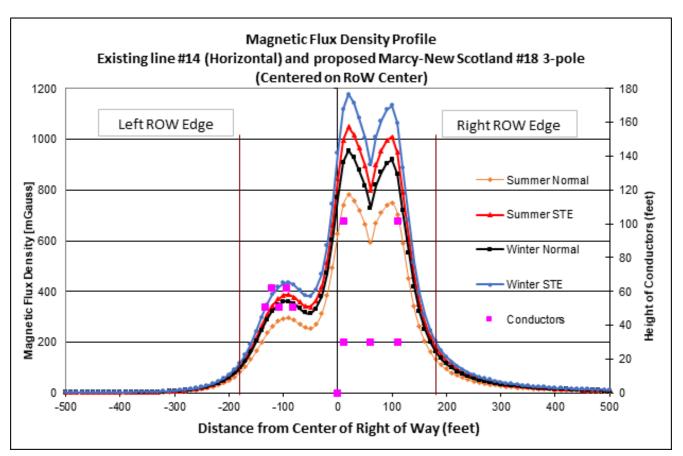

Right of Way Data

Offset from X=0 to Left RoW edge	-75.00
Offset from X=0 to RoW center	0.00

Existing #14 and Existing #18

		QII Sub	conductors									
Conductor	Codename	Spa	cing (in)		SW		_					
1351.5kcmil 45/7 AC			- 18in		- 7 EHS Steel				Line Ratin	igs (Amps)		
795 kcmil 26/7 ASC	R Drake	2 -	- 18 in	7/16" -	- 7 EHS Steel		L		LITE RAM	iga (Airipa)		
					Conductor	Conductor		S	Summer Short		Winter Short	
			Numbe	er of	Diameter	Spacing	L-L Voltage	Summer	Term	Winter Normal	Term	
Bundle	X-feet	Y-feet	Conduc	tors	[inches]	[inches]	(rated kV)	Normal	Emergency		Emergency	Line Name
1	35.00	67.60		4	1.3860	18.000	345					Existing #18 Line
2	60.00	67.60		4	1.3860	18.000	345	3124	4204	3824	4716	
3	85.00	67.60		4	1.3860	18.000	345					
4	35.00	111.60		1	0.4375	0.000	0	0	0	0	0	SW
5	85.00	111.60		1	0.4375	0.000	0	U	0	U	U	SW
6	-82.00	51.06		2	1.1070	18.000	345					Existing #14 Line
7	-108.00	51.06		2	1.1070	18.000	345	2228	2886	2718	3258	_
8	-134.00	51.06		2	1.1070	18.000	345					
9	-121.00	61.90		1	0.4375	0.000	0	^	0	^	^	SW
10	-95.00	61.90		1	0.4375	0.000	0	U	0	0	U	SW

Right of Way Data


Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center

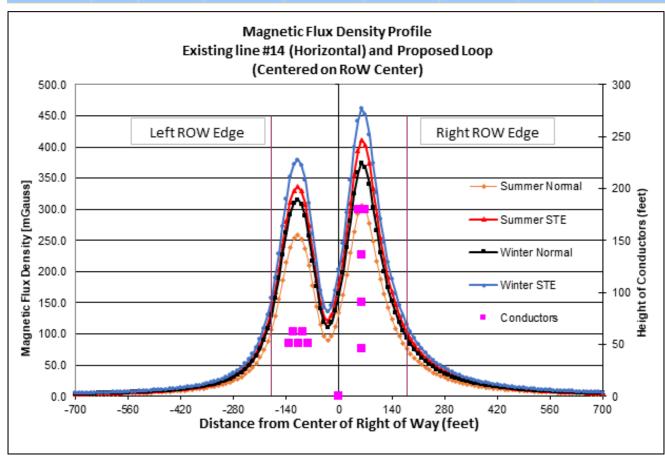
-180.00 0.00

	Magnetic Field (mG)					
Loading Cases	Max ROW Edge	Мах.				
Summer Normal	82.144 (South)	246.7				
Summer Short Term Emergency	105.944 (South)	320.9				
Winter Normal	100.171 (South)	301.1				
Winter Short Term Emergency	119.687 (South)	362.1				

Existing #14 and Proposed #18 (3-pole)

			Q I Y Sub	conductors -									
Cond	luctor	Codename	Spac	ing (in)		SW							•
	il 45/7 ACSR	Dipper	4 -	- 18in		- 7 EHS Steel				Line Ratir	igs (Amps)		
795 kcmil 2		Drake		Numbe	er of	Conductor Diameter	Conductor Spacing	L-L Voltage	Summer Normal	Summer Short Term	Winter Normal	Winter Short Term Emergency	
Bu	undle	X-feet	Y-feet	Conduc	tors	[inches]	[inches]	(rated kV)		Emergency		Emergency	Line Name
1		10.00	30.02		4	1.3860	18.000	345					Proposed #18 (3-pole)
2		60.00	30.03		4	1.3860	18.000	345	3124	4204	3824	4716	
3	1	10.00	30.03		4	1.3860	18.000	345					
4		10.00	101.83		1	0.4375	0.000	0	0	0	0	0	SW
5	1	10.00	101.83		1	0.4375	0.000	0	V	V	V	V	SW
6	-	82.00	51.06		2	1.1070	18.000	345					Existing #14 Line
7	-1	00.80	51.06		2	1.1070	18.000	345	2228	2886	2718	3258	
8	-1	34.00	51.06		2	1.1070	18.000	345					
9	-1	21.00	61.90		1	0.4375	0.000	0	0	0	0	0	SW
10	-	95.00	61.90		1	0.4375	0.000	0	J	0	U	J	SW

Right of Way Data


Offset from X=0 to Left RoW edge	-180.00
Offset from X=0 to RoW center	0.00

	Magnetic Field (mG)					
Loading Cases	Max ROW Edge	Мах.				
Summer Normal	133.884 (North)	780.6				
Summer Short Term Emergency	180.537 (North)	1048.8				
Winter Normal	163.914 (North)	955.4				
Winter Short Term Emergency	202.457 (North)	1176.8				

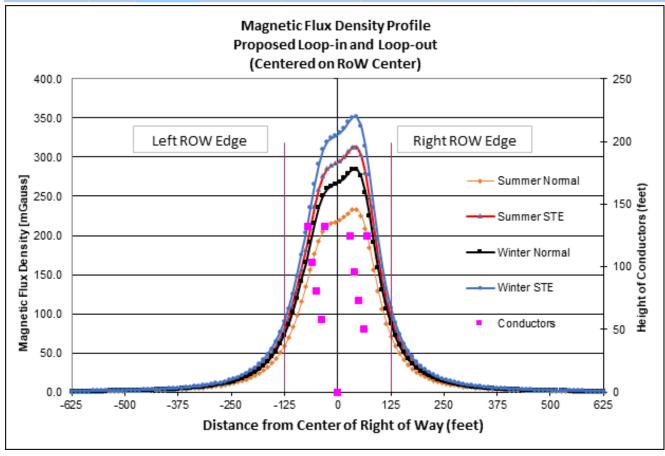
QTY Subconductors -

Existing #14 and Proposed Loop

	Conductor	Codename	Spac	cing (in)		SW							•
13	51.5kcmil 45/7 ACS	R Dipper	4 -	- 18in	-	7 EHS Steel				Line Ratin	igs (Amps)		
7	95 kcmil 26/7 ASCR	Drake	2 -	- 18 in	7/16" -	7 EHS Steel		Ì					
						Conductor	Conductor		Summer	Summer Short		Winter Short	
				Numb	er of	Diameter	Spacing	L-L Voltage	Normal	Term	Winter Normal	Term	
	Bundle	X-feet	Y-feet	Conduc	tors	[inches]	[inches]	(rated kV)	Normal	Emergency		Emergency	Line Name
	1	60.00	46.00		4	1.3860	18.000	345					Proposed #18 (Loop)
	2	60.00	91.00		4	1.3860	18.000	345	3124	4204	3824	4716	
	3	60.00	136.00		4	1.3860	18.000	345					
	4	51.13	180.00		1	0.4375	0.000	0	0	0	0	0	SW
	5	68.88	180.00		1	0.4375	0.000	0	v	v	Ŭ	V	SW
	6	-82.00	51.06		2	1.1070	18.000	345					Existing #14 Line
	7 -	-108.00	51.06		2	1.1070	18.000	345	2228	2886	2718	3258	
	8 -	134.00	51.06		2	1.1070	18.000	345					
	9	-95.00	61.90		1	0.4375	0.000	0	0	0	0	0	SW
	10 -	-121.00	61.90		1	0.4375	0.000	0	U	0	U	J	SW

Right of Way Data

Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center


-180.00 0.00

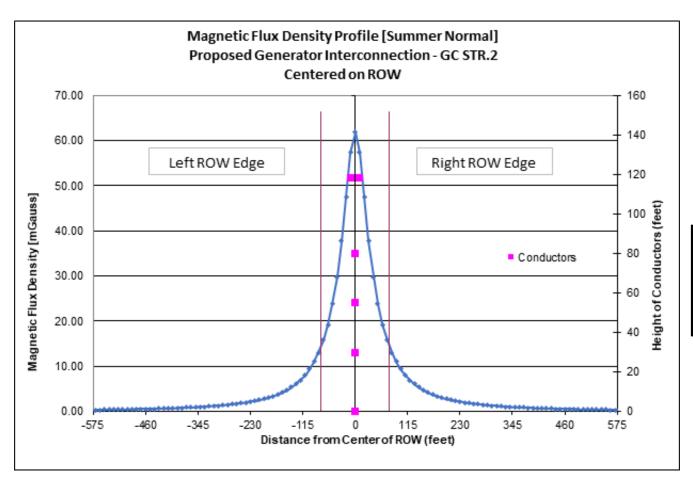
	Magnetic Field (mG)					
Loading Cases	Max ROW Edge	Мах.				
Summer Normal	106.679 (South)	306.1				
Summer Short Term Emergency	139.011 (South)	411.2				
Winter Normal	130.209 (South)	374.6				
Winter Short Term Emergency	156.772 (South)	461.4				

QTY Subconductors -

Proposed Loop-in and Loop-out

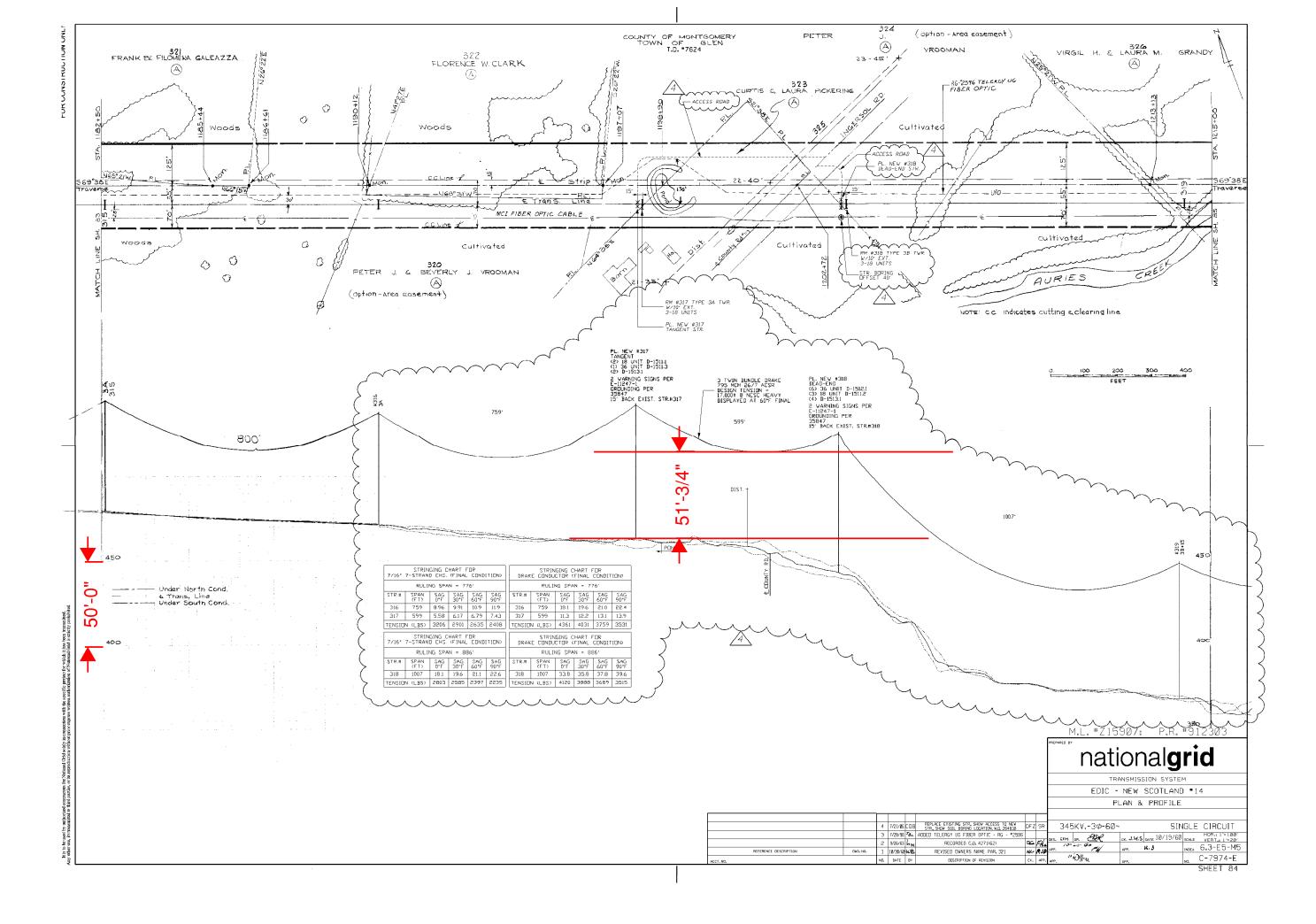
L	Conductor	Codename	Spacing	g (in)	SW									
	1351.5kcmil 45/7 ACS		4 - 18		7 EHS Steel				Line Ratir	ngs (Amps)				
	1351.5kcmil 45/7 ACS	R Dipper	4 - 18	3in 7/16"	7 EHS Steel						un e el e			
					Conductor	Conductor		Summer	Summer Short		Winter Short			
				Number o	f Diameter	Spacing	L-L Voltage	Normal	Term	Winter Normal	Term			
	Bundle	X-feet	Y-feet	Conductors	[inches]	[inches]	(rated kV)		Emergency		Emergency	Line Name		
	1	-39.00	58.09	4	1.3860	18.000	345					Proposed Loop-in		
	2	-50.00	80.59	4	1.3860	18.000	345	3124	4204	3824	4716			
	3	-61.00	103.09	4	1.3860	18.000	345							
	4	-69.44	132.59		0.4375	0.000	0	0	0	0	0	SW		
	5	-30.56	132.59		0.4375	0.000	0	U	V	U	U	SW		
	6	61.00	50.5	4	1.3860	18.000	345					Proposed Loop-out		
	7	50.00	73	á	1.3860	18.000	345	3124	4204	3824	4716			
	8	39.00	95.5	ė.	1.3860	18.000	345							
	9	69.44	125		0.4375	0.000	0	0	0	0	0	SW		
	10	30.56	125		0.4375	0.000	0	O	0	J	0	J	9	SW

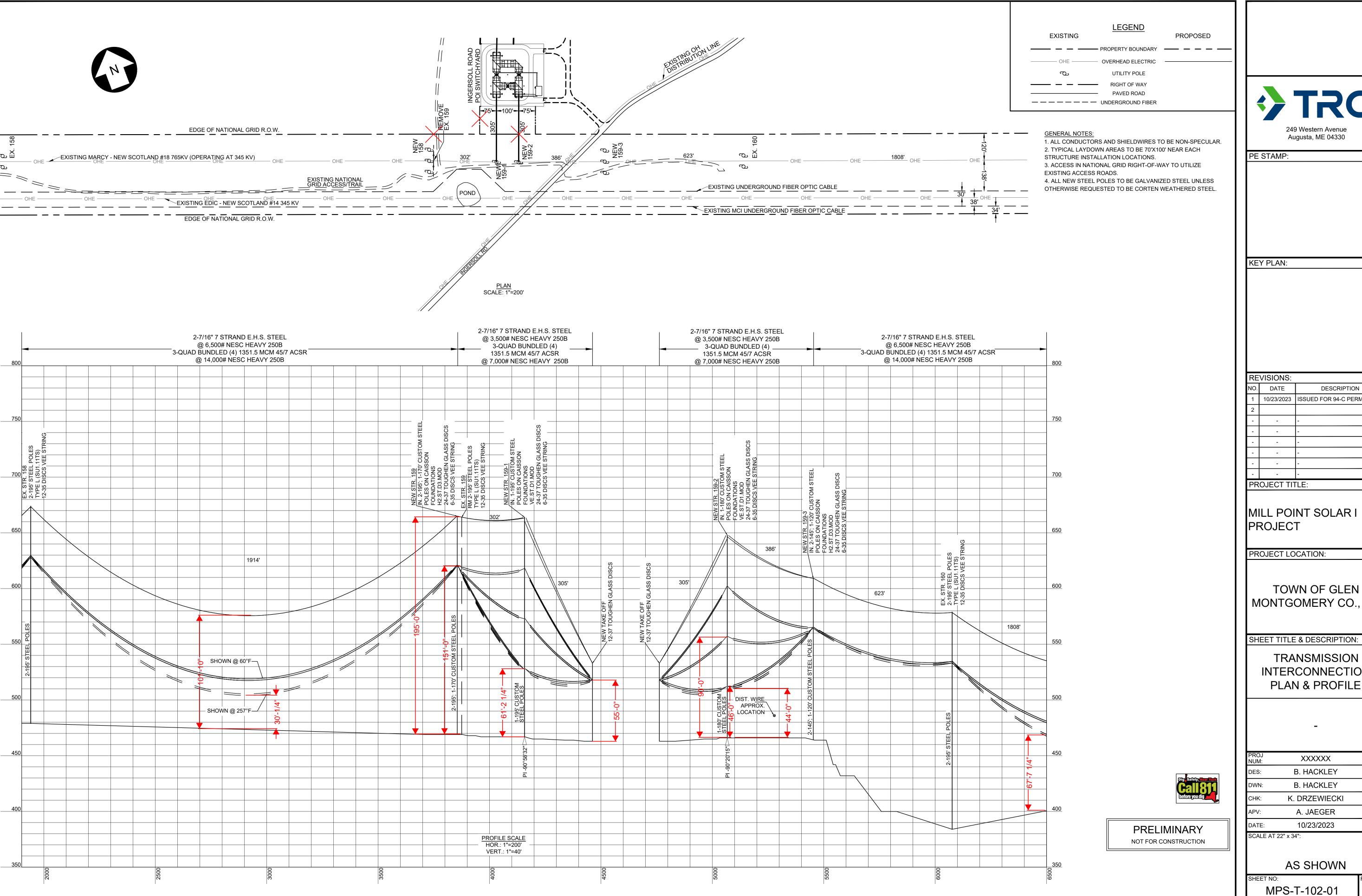
Right of Way Data


Offset from X=0 to Left RoW edge
Offset from X=0 to RoW center
0.00

	Magnetic Field (mG)				
Loading Cases	Max ROW Edge	Мах.			
Summer Normal	71.411 (East)	232.8			
Summer Short Term Emergency	96.098 (East)	313.3			
Winter Normal	87.412 (East)	285			
Winter Short Term Emergency	107.802 (East)	351.4			

Proposed Generator Interconnection - GC STR.2


		QTY Subconductors -	
Conductor	Codename	Spacing (in)	SW
1351 5kcmil /15/7 ACSR	Dinner	2 - 18in	7/16" - 7 FHS Steel


Bundle	X-feet	Y-feet	Number of Conductors	Conductor Diameter [inches]	Conductor Spacing [inches]	L-L Voltage (rated kV)	Peak Facility Rating (Amps)	Line Name
	0.00	20.00	_	1.0000	10.000	245		00.577
I	0.00	30.00	2	1.3860	18.000	345	400	GC STR
2	0.00	55.00	2	1.3860	18.000	345	430	
3	0.00	80.00	2	1.3860	18.000	345		
4	-8.50	118.05	1	0.4375	0.000	0	0	SW
5	8.50	118.05	1	0.4375	0.000	0	0	SW

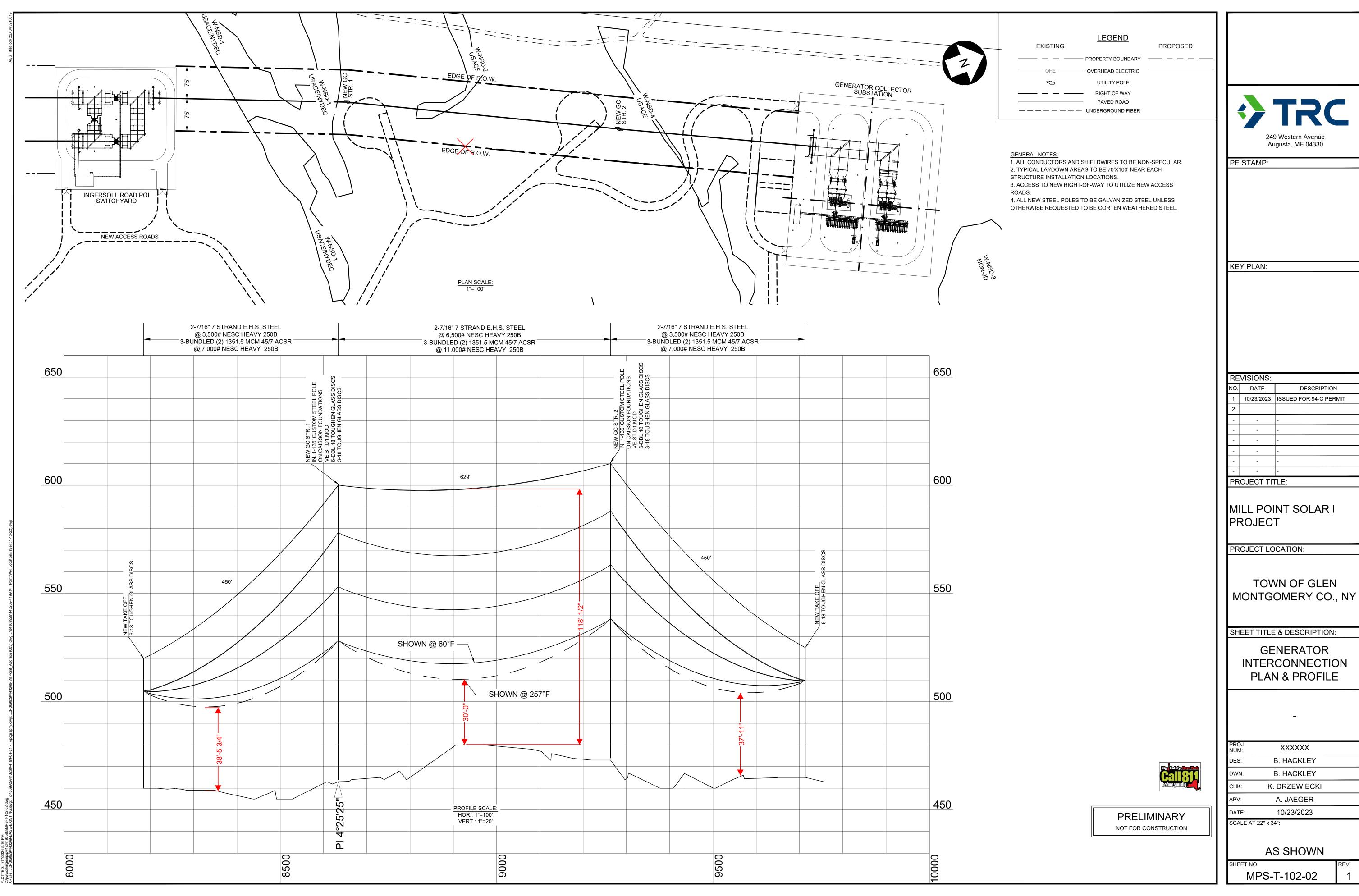
Right of Way Data Offset from X=0 to Left RoW edge -75.00 Offset from X=0 to RoW center 0.00

	Magnetic Field (mG)			
Loading Cases	Max ROW Edge	Мах.		
Peak Facility Rating	14.358 (Equal on both sides)	61.9		

249 Western Avenue Augusta, ME 04330

DESCRIPTION 10/23/2023 ISSUED FOR 94-C PERMIT

MILL POINT SOLAR I


TOWN OF GLEN MONTGOMERY CO., NY

INTERCONNECTION PLAN & PROFILE

XXXXXX B. HACKLEY B. HACKLEY K. DRZEWIECKI A. JAEGER 10/23/2023

AS SHOWN

MPS-T-102-01

